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Abstract. A new residual-based a posteriori error estimator is proposed and analyzed for an 
incomplete interior penalty Galerkin discretization of monotone quasi-linear elliptic problems. We 
derive the computable upper and lower bounds on the error measured in an energy norm. It is proved 
that the estimator may have the same form as the continuous Galerkin finite element methods. Results 
of numerical example are presented. 

1. Introduction 

In the early 1970s, discontinuous Galerkin (DG) methods were firstly introduced to solve the first 
order hyperbolic equations. Meanwhile, they were applied to the numerical solution of second order 
elliptic problems. During the past decades, DG methods have been intensively studied due to their 
flexibility, stability and some other merits. We refer the reader to [2, 4] and the books [13, 18]. 

Our aim is to analyze the error estimator for a discontinuous Galerkin formulation of monotone 
quasi-linear elliptic problems. In contrast to the a posteriori error estimates for linear elliptic 
problems (see for example [1, 3, 12, 14, 16, 19] and the reference therein), such work is rare for 
nonlinear elliptic problems. Indeed, it has been presented  in  [5, 6, 8, 10, 15]. The authors of [8] 
presented a new residual-based reliable a posteriori error estimator for the local discontinuous 
Galerkin approximations of linear and nonlinear diffusion problems. The authors of [15] considered 
the a posteriori error analysis of interior penalty hp-version discontinuous Galerkin finite element 
methods for a class of quasi-linear elliptic problems. Bi and Lin [6] studied the incomplete penalty 
h-version discontinuous Galerkin methods for monotone nonlinear elliptic problems.  Recently, Bi 
and Ginting [5] proposed and studied the residual-based a posteriori error estimates of symmetric 
interior penalty discontinuous Galerkin method for solving a class of nonmonotone quasi-linear 
elliptic problems. Congreve and Houston [10] developed the a priori and a posteriori error analysis of 
hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone 
quasi-Newtonian fluid flows. 

In this paper, we focus on the study of error estimator, postponing the convergence analysis of 
adaptive algorithm to a subsequent work. The error estimator proposed in [6] has three terms. We 

prove that the last term 
1/2
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is a high-order perturbation. Consequently, the error 

estimator we proposed is the same as the continuous finite element methods. From [17], one can see 
that our work in this paper is crucial in the convergence analysis of adaptive discontinuous Galerkin 
methods. 
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The rest of this paper is organized as follows. The model problem and some notations are 
introduced in Sect. 1. We present the discontinuous Galerkin  methods in Sect. 2. The a posteriori 
error estimates are studied in Sect. 3. The numerical experiment is provided in Sect. 4. Finally, we 
close with a brief summary of the main results in Sect. 5. Throughout this paper, we use C  with or 
without subscripts to denote a generic positive constant which is independent of h  but may depend 
on u . It may take different values at different occurrences. 

2. Preliminaries 

Let 2RWÎ  be an open bounded polygonal domain with Lipschitz boundary ∂Ω . We consider an 
incomplete interior penalty Galerkin  method for the following quasi-linear elliptic boundary value 
problem: 

( , ) ( )
0
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x u f
n
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o

Ω
 = ∂

⋅ ∇ =
Ω

−∇ A
                                                        (1)                                                                                

where 2 ( )f L∈ Ω . In this paper, only the case: 1 2( , ) ( ,| |) ( ( , ), ( , ))Tx u a x u u A x u A x u∇ = ∇ ∇ = ∇ ∇A  is 
considered. For simplicity, we suppress the dependence of A , a  on x , and write ( )u∇A , 

(| |)a u∇ instead of ( , )x u∇A ( ,| |)a x u∇ . 
Remark: In this paper, as in [6], only the homogenous Dirichlet condition is considered. As an 

outlook, we stress that the results are adapted to cover other types of boundary conditions. 
Assume 1.1There exist two constants 0 0C >  and  0α > , which are independent of ξ  and η such 

that   
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  For a subdomain D ⊆ Ω , we use the standard notations and definitions for the Sobolev spaces 
( ),m pW D  with norm 

, ,k p D
⋅  and seminorm 

, ,k p D
⋅  (see [9]). To simplify the notation, we drop p  if 

2p = ,  i.e., 
,2, ,m D m D

= ⋅⋅ . The same convention is also used for the seminorms. When 2p = , 

( ),2mW D  is denoted by ( )mH D . When 0m = , ( )mH D  coincides with ( )2L D , in this case, the 

inner product will be denoted by ( )D
⋅ .  If  D = Ω , let ( ) ( )D

⋅ = ⋅ . We use ,
E E

u v uvds= ∫  for edge 

integral, then 1/2

0,
,

E E
u u u= .  

Let h ( 0 1h< < ) be a family of triangulations of the domain $\Omega$. Moreover, for any 

hK ∈ , let 1/2
Kh K=  and max{ : }K hh h K= ∈ . We remark that h  can be a conforming or 

nonconforming mesh. Assume h  satisfies the following conditions (see [17]): The elements of h  
satisfy the minimal angle condition. Moreover, the triangulation h  is locally quasi-uniform. 

For a given positive integer n , define the broken Sobolev space associated with h  by 
2( ) { ( ) : | ( ), },n n

h K hH v L v H K K= ∈ Ω ∈ ∀ ∈   
equipped with the broken Sobolev norm and seminorm 
When 2n = , we write 2( ) ( )h hE H=  .  Denote the discontinuous linear finite element space 

associated with h  by 
2

1( ) { ( ) : | ( ), }h K hV v L v P K K= ∈ Ω ∈ ∀ ∈  . 
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Remark: For the convenience of programming, we use the discontinuous linear finite element 
space. However, the analysis of this paper can be directly extended to higher order finite element 
space.  

Next, we define the average and the jump operators. Denote by   the set of all edges in h . 
Let = I b∪   , where I  is the set of interior edges and b  is the set of  boundary edges. Let  K +  and  
K −  be two adjacent elements in h sharing a common edge E , and Kn±  be the unit outward vector 
normal to K ±∂ , respectively. For given scalar-value function v  and vector-value function q  which 
are smooth inside each element K ± , define their averages and jumps on IE∈  by 

1
2{ } | ( )E K Kv v v+ −= + ,  [ ] |E K K K Kv v v+ + − −= +n n ,   1

2{ } | ( )E K K
+ −= +q q q ,  [ ] |E K K K K

+ + − −= ⋅ + ⋅q q n q n , 
where Kv+ , K

+q  are |
K

v + , |
K +q  and Kv− , K

−q  are |
K

v − , |
K −q . If bE∈ , { } |Ev v= , { } |E=q q  and 

[ ] |Ev v= n , [ ] |E= ⋅q q n . 

3. Discontinuous Galerkin methods  

Assume that 1
0( ) ( )G

h hu V H∈ ∩ Ω  is the solution of the continuous Galerkin finite element 
method that is given by 

1
0( ( ), ) ( , ), ( ) ( )G

h hu f V Hχ χ χ∇ ∇ = ∀ ∈ ∩ ΩA  .                               (4)                                                   
In order to construct the weak formulation for problem (1), we introduce the form hB  defined by 

1( , ) ( ( ), ) { ( )},[ ] [ ],[ ] , , ( )
h

h K E hE E
K E E

B w v w v w v h w v w v Eγ −

∈ ∈ ∈

= ∇ ∇ − ∇ + ∀ ∈∑ ∑ ∑A A
  

 ,              (5) 

where ( )Eh diam E=  and γ  is the interior penalty parameter independent of Eh . 
Notice that hB   is consistent with  the equations (1) in the following sense. Assume that 

2 ( )u H∈ Ω  satisfies (1), then for any ( )hv E∈  , we have 

E
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h

h h

h K E
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K K E
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= − ∇⋅ ∇ + ∇ ⋅ − ∇

∑ ∑

∑ ∑ ∑
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  

 

( , )f v=                                                                                                                               (6) 
The incomplete interior penalty discontinuous Galerkin method for (1) is to find  ( )h hu V∈   such 

that 
( , ) ( , ), ( )h h h h h hB u v f v v V= ∀ ∈  .                                                       (7)                                          

Therefore, 
( , ) ( , ), ( )h h h h h h hB u v B u v v V= ∀ ∈  .                                                    (8) 

The authors of [6] have shown that the equation (7) admits a unique solution if the  parameter 
0 0( 1)γ γ γ≥ ≥ . Now, we introduce the energy norm which has been defined in [6] 

1/2
22 1

1, 0,
||| ||| | | [ ]

h E E
E

v v h vγ −

∈

 = + 
 

∑


 

Lemma 2.1[6, 7] For 1( )hv H∈  , there exists a positive constant C  independent of v  
such that 

0,
||| |||

h
v C v≤


. 

From Lemma 2.1 and the definition of  ||| |||⋅ , it is easy to show that 
1,

||| ||| .
h

v C v≤


In order to get 

the a posteriori error estimates of incomplete interior penalty discontinuous Galerkin method, 
following [14, 17], we decompose the discontinuous finite element space ( )hV   into two subspaces: 
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one is the conforming part 1
0( ) ( ) ( )c

h hV V H= ∩ Ω   and the other is the nonconforming part ( )n
hV  . 

Based on this decomposition, for any ( )h hv V∈  , it can be written as c n
h h hv v v= + . We recall the 

estimates on the nonconforming part which have been established  in [16] and [17] for conforming 
and nonconforming meshes. 

Lemma 2.2  For each ( )h hv V∈  , there exists a positive constant 1C  such that 
2 2 21

1 0,1, 1,
[ ]

h h

n c
h h h E h E

E
v v v C h v−

∈

= − ≤ ∑ 


,                                          (9) 

                                               
2 2 2

1 0,0, 0,
[ ]

h h

n c
h h h E h E

E
v v v C h v

∈

= − ≤ ∑ 


                                                (10) 

4. A posteriori error estimates 

4.1 Upper bound 
For any ( )h hv V∈  , denote the element residual on hK ∈  and jump residual on E∈  by 

( ) | ( ) |h K h KR v f v= +∇⋅ ∇A ,  ( ) | [ ( )] |h E h EJ v v= ∇A . 
In view of the above denotation, define the local a posteriori error estimator by 

2 22 2 1
1 20, 0,

( , ) ( ) ( )h K h E hK K
v K h R v h J vh

∂ ∩Ω
= +  

Then the corresponding global a posteriori error estimator is  
2 2
1 1( , )= ( , )

h

h h h
K

v v Khh
∈
∑


 ， 

and we write 1 1( , )=h huhh  . We use the residual-based a posteriori error estimator as the kernel of 
adaptive incomplete interior penalty Galerkin method. In [6], the authors have proved the following 
upper bound. 

Lemma 3.1 Assume that u  and hu  are the solutions of (1) and (7), respectively. Then we have 

20,
( ) ,

h
hu u Ch∇ − ≤


 

where 
1/2
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. 

In the rest of this section, we prove that 21
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h u−

∈
∑
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 is a high order perturbation. Therefore, 1η  

can be viewed as a posteriori error estimator that is our main result. 
Theorem 3.1 Assume that u , hu  and G

hu  are the solutions of (1), (7) and (4), respectively. If 

1 0γ γ γ≥ > , we have 
4
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u u γ h
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∇ − ≤∑


,       421 2
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Proof For any 1
0( ) ( )hV Hχ ∈ ∩ Ω , we have 

                             ( , ) ( , ), ( , ) ( , ), ( , ) ( , )G
h h h h hB u f B u f B u fχ χ χ χ χ χ= = = .                             (11) 

Let 1
2 min{ ,1}β α= , it then follows from Lemma 3.3 of [6] that 

                                 ||| ||| ( , ) ( , )G G G G
h h h h h h h h h hu u B u u u B u u uβ − ≤ − − −                                                        (12) 

Using (8) and (11), the right hand side of (12) can be rewritten as 
( , ) ( , ) ( , ) ( , )G G G G G G
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Then by Green's formula, we have 
( ( ) ( ), ) ( ) ( ) ( )

h h
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h h h K h h hK
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1 2 3 4 ,I I I I= + + +                                                                                                                           (14) 
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Next, we bound the terms on the right hand of (14) separately. Using the Cauchy--Schwarz 
inequality and the Young's inequality, for any 1 0ε > , we have 

                                    1
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For any 2 0ε > , the same arguments and (2) lead to 
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Then, it follows from the scaled trace inequality 2 2 21 1
0, 0, 0,

( ), ( )E EE K K
w C h w h w w H K−≤ + ∇ ∀ ∈  

and the inverse inequality that 
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Let χ be the conforming part of G
h hu u− , from Lemma 2.2, we have 
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Putting (20), (21) and (22) into (15), (16) and (17), we get 
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According to the definition of energy norm ||| |||⋅ , the above inequality can be rewritten as 

( ) ( )1 1 3 0 12

2 2

2 2( 1) 11
2 0 2 2 2 0,0,
( ) ( ) [ ]

h

C C C CC G
h h E h EK

K E
C u u h uε γ

ε εβ ε βγ + −

∈ ∈

− + ∇ − + − − −∑ ∑
 

 

1

2 221
2 0, 0,

( ) ( )
h I

K h E hK E
K E

h R u h J uε γ
∈ ∈

 
≤ + 

 
∑ ∑
I 

                                                                             (24) 

Choose sufficiently small  1ε , 2ε   such that 
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Thus, we get the desired results with 1 3
2

3 ( 1)
4

C CC
β

+= . 

Corollary Assume that u  and hu  are the solutions of (1) and (7), respectively. If 1 0γ γ γ≥ > , we 
have 

1||| |||hu u Ch− ≤ . 
Proof By Lemma 3.1 and Theorem 3.1, we have 
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4.2 Local lower bound 
We introduce the oscillations of ( )hR u  and ( )hJ u  by 

2 22 2 2
, ,0, 0,

( ) ( ) ( ) , ( ) ( ) ( )R K h K h h J E h E h hK E
osc u h R u R u osc u h J u J u= − = −  

where ( )hR u   is the average value of ( )hR u  over the element K  and ( )hJ u   is the average value of 
( )hJ u  over the edge E . The following theorem can be derived from Theorem 4.7 of [6], we omit its 

proof. 
Theorem 3.2 Assume that u  and hu  are the solutions of (1) and (7), respectively. Then we have 

( )
1/2

2 2 2
1 , ,1,
( , ) ( ) ( )

K

h h R K h J E hK
K E K

u K C u u osc u osc u
ω

h
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 
≤ − + + 

 
∑ ∑ , 

where Kω  is the patch of elements sharing at least a common edge with K . 

5. Numerical example 
In order to illustrate the theoretical results, two types of the a posteriori error estimators are 

considered. The nonlinear system of algebraic equations are solved with the aid of Newton iteration. 
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Denote the degrees of freedom by DOFs. Define 1 1 / ||| |||hEff u uh= − , 1 2 / ||| |||hEff u uh= −  which are 
so-called effectivity indices. 

Let us consider the problem (1) with 2(0,1)Ω =  and ( )2

( ) 1 uu e u−∇∇ = + ∇A . We choose ( )f x  

such that the analytical solution u  is 
2 2 2 2( , ) ( )( ) arctan(60 ( 1.25) ( 0.25) 60)u x y x x y y x y= − − − + + − . 

In this numerical problem, we choose Dörfler strategy [11] and set 0.5θ = . For the  mesh 
refinement method, we use the newest vertex bisection. The left of Fig. 1 and Fig. 2 show the meshes 
generated by adaptive algorithm based on error estimators 1η  and 2η , respectively. The right of Fig. 
1 and Fig. 2 show convergence history and effectivity indices based on error estimators 1η  and 2η , 
respectively. 

 
Fig.1 AFEM based on 1η  (Left) Mesh after 18 adaptive steps with 11828 elements; (Right) Convergence history of 

adaptive algorithm in log-log coordinates. 

 
Fig.2 AFEM based on 2η  (Left) Mesh after 18 adaptive steps with 11944 elements; (Right) Convergence history of 

adaptive  algorithm in log-log coordinates. 
We can see from Fig. 1 and Fig. 2 that: 
1. Both error estimators have accurately detected the singularities of the solution u   which are 

along the circular curve in the domain Ω , but adaptive algorithm based on 2η  refines slightly more 
elements than that based on 1η . 

2. Both adaptive finite element methods get an optimal rate of convergence 
1/2||| ||| ( )hu u O DOFs−− ≈ . The two error estimators are both effective since the effectivity indices are 

bounded from below and above. 

6. Conclusions 
In this paper, we considered a new residual-based a posteriori error estimator for an incomplete 

interior penalty Galerkin discretization of second order quasi-linear elliptic problems. The 
computable upper and lower bounds on the error in an energy norm were derived. Numerical results 
confirmed our theoretical findings. 
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From the numerical results, it can be seen that both adaptive algorithms are available because both 
of them get the optimal convergence rate 1/2||| ||| ( )hu u O DOFs−− ≈  and the effectivity indices are 
bounded. The two error estimators accurately detected the singularities of the solution. 
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